Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids.

نویسندگان

  • A C Kreitzer
  • W G Regehr
چکیده

Depolarization of cerebellar Purkinje neurons transiently suppresses IPSCs through a process known as depolarization-induced suppression of inhibition (DSI). This IPSC suppression occurs presynaptically and results from an unknown retrograde signal released from Purkinje cells. We recorded IPSCs from voltage-clamped Purkinje cells in cerebellar brain slices to identify the retrograde signal for cerebellar DSI. We find that DSI persists in the presence of the broad-spectrum metabotropic glutamate receptor antagonist LY341495 and the GABA(B) receptor antagonist CGP55845, suggesting that the retrograde signal is not acting through these receptors. However, an antagonist of the cannabinoid CB1 receptor AM251 completely blocked cerebellar DSI. Additionally, the cannabinoid receptor agonist WIN55,212-2 suppressed IPSCs and occluded any additional IPSC reduction by DSI. These results indicate that cannabinoids released from Purkinje cells after depolarization activate CB1 receptors on inhibitory neurons and suppress IPSCs for tens of seconds. Cerebellar DSI thus shares a common retrograde messenger with DSI in the hippocampus and depolarization-induced suppression of excitation in the cerebellum, suggesting that retrograde synaptic suppression by endogenous cannabinoids represents a widespread signaling mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retrograde Inhibition of Presynaptic Calcium Influx by Endogenous Cannabinoids at Excitatory Synapses onto Purkinje Cells

Brief depolarization of cerebellar Purkinje cells was found to inhibit parallel fiber and climbing fiber EPSCs for tens of seconds. This depolarization-induced suppression of excitation (DSE) is accompanied by altered paired-pulse plasticity, suggesting a presynaptic locus. Fluorometric imaging revealed that postsynaptic depolarization also reduces presynaptic calcium influx. The inhibition of ...

متن کامل

Short-term retrograde inhibition of GABAergic synaptic currents in rat Purkinje cells is mediated by endogenous cannabinoids.

Depolarization-induced suppression of inhibition (DSI) is a form of short-term plasticity of GABAergic synaptic transmission that is found in cerebellar Purkinje cells and hippocampal CA1 pyramidal cells. DSI involves the release of a calcium-dependent retrograde messenger by the somatodendritic compartment of the postsynaptic cell. Both glutamate and endogenous cannabinoids have been proposed ...

متن کامل

The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells.

Action potential firing or depolarization of the postsynaptic neuron can induce a transient suppression of inhibitory synaptic inputs to the depolarized neuron in the cerebellum and hippocampus. This phenomenon, termed depolarization-induced suppression of inhibition (DSI), is initiated postsynaptically by an elevation of intracellular Ca2+ concentration ([Ca2+]i) and is expressed presynaptical...

متن کامل

Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus.

Endogenous cannabinoids (endocannabinoids) are endogenous compounds that resemble the active ingredient of marijuana and activate the cannabinoid receptor in the brain. They mediate retrograde signaling from principal cells to both inhibitory ["depolarization-induced suppression of inhibition" (DSI)] and excitatory ("depolarization-induced suppression of excitation") afferent fibers. Transient ...

متن کامل

Endocannabinoid- and mGluR5-dependent Short-Term Synaptic Depression in an Isolated Neuron/Bouton Preparation from the Hippocampal CA1 Region Running title: Endocannabinoid- and mGluR5-dependent STD

Endocannabinoids released from the postsynaptic neuronal membrane can activate presynaptic CB1 receptors and inhibit neurotransmitter release. In hippocampal slices, depolarization of the CA1 pyramidal neurons elicits an endocannabinoid-mediated inhibition of GABA release known as depolarization-induced suppression of inhibition (DSI). Utilizing the highly reduced neuron/synaptic bouton prepara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 20  شماره 

صفحات  -

تاریخ انتشار 2001